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Electric-field-dependent thermal fluctuations of giant vesicles
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The influence of an ac electric field on the shape and thermal fluctuations of giant vesicles is
theoretically investigated. The experiments show that at high frequencies (dielectric regime) vesicles
deform into oblate ellipsoids with the symmetry axis parallel to the applied electric field, while
at low frequencies (conductive regime) they deform into prolate ones. Depending on the medium
conductivity, the transition frequency between both regimes may be as low as a few kilohertz.

PACS number(s): 68.10.—m, 82.70.—y, 87.22.Bt

Since the pioneering work of Helfrich [1] the deforma-
tion of giant vesicles under the action of an applied elec-
tric field has drawn the attention of many authors [2-5].
In these works, the vesicle is modeled as thin dielectric
shell in a conducting medium and Maxwell’s stress tensor
is used to calculate the electric forces acting on the mem-
brane. The common understanding is that the external
field acts basically via a Maxwell stress at the equator.
This causes the vesicle to deform into a prolate ellipsoid
with its symmetry axis parallel to the applied electric
field. Recently, Kummrow and Helfrich [5] used this in-
duced stress to measure the bending elasticity of a lipid
membrane. In this paper, we would like to point out
the influence of a coupling between the external field and
the thermal fluctuations of lipid bilayers, the underly-
ing model being that of a thin dielectric shell (dielectric
constant €,,) embedded in another dielectric medium (di-
electric constant €,,). This approximation is valid if the
frequency w of the applied field is high enough for ne-
glecting the conductivity of the aqueous phase.

According to Maxwell’s equation

V x H = (4n/c)KE + (ew/c)(OE/8t), (1)

there are two contributions on the right-hand side, a con-
ductivity and a displacement current, respectively. For
an external electric field with a frequency w < 4mK/€y,
the surrounding medium can be considered as a con-
ductor of conductivity k, while in the opposite case
w > 47K /€y, the medium behaves as an ordinary dielec-
tric with dielectric constant €,,. For poor conductors, the
dispersion frequency 4wk/e, can be as low as few kilo-
hertz. Applying a measured value of k ~ 5 x 10~¢ S/m
shows that for frequencies in the range 0.01-1 MHz, the
dielectric approximation is then very appropriate.

Let the shape of the membrane midsurface be given
by the radius vector r(8, ¢), or explicitly in polar coordi-
nates, r = R[1 + eu(6, ¢)]. Only quasi-spherical vesicles
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will be considered so |eu| < 1. Let n(6, ¢) be the normal
to the midsurface pointing to the vesicle exterior. Then
the parametric equations of the surfaces surrounding the
membrane are

r+(0,¢) = r(6, ¢) £ n(6, 9)(d/2), (2

where d is the membrane thickness. The upper and lower
signs are for the outer and inner membrane surfaces, re-
spectively.

Let the applied electric field in the absence of the vesi-
cle E be homogeneous and point along the Oz axis of a
polar coordinate system. The potential due to the vesi-
cle polarization in the external field is the solution of the
Laplace equation [6]

V*Y(r,0,0) =0 ®3)

in each of the three homogeneous regions: ¥~ (r, 6, ¢) in

the interior of the vesicle, ¥™(r,8,¢) in the membrane

and ¥t (r,8,p) in the exterior, with lim ¥*(r,6,¢9) =
T—00

Yo(r,0,) = —Ercosf. On the interfaces between these
regions the potential satisfies the usual boundary condi-
tions for continuity of the potential and discontinuity of
its normal derivative [6]:

Y™ (ra, 0x, p2) = Y (ra, 0z, 1),
@
em[OY™ (r+, 0%, 01 )/On] = €u[0% (r+, 0+, 0+)/On).

At both boundaries (ry,604,94), the parametric equa-
tions (2) of the corresponding surfaces are dependent on
the deformation ¢, so the solution ¢¥™(r, 8, ¢) is a function
of € as well. Because the membrane interfaces (2) do not
coincide with coordinate surfaces (except when ¢ = 0),
the mathematical problem as defined by (3) and (4) is
not separable in spherical coordinates. For quasispher-
ical vesicles however, the deviation from the spherical
shape is small and we can use the perturbations method
to find the solution in a power series of €:
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¢(T10)¢)E) = Zek‘l/)k(r, 07 ‘P) (5)

k=0

Substituting the series into (3) leads to trivial separation
into Laplace equations for each of the terms:

Vi (r, 0, ) = 0. (6)

The same substitution into the boundary conditions (4)
gives

oo oo
Zskd'l:n(ri,ei,W:k) = Zek'l/l;t(ri-,ei, (P:E):
k=0 k=0

)

emz ) ("'d:»e:tﬂpi) Z k OVE (1, 0%, px) (ﬂtﬁiy‘ﬁ:&:)

In addition to the explicit € dependence, now we have an
implicit one via parametric equations (2), so it is not triv-
ial to separate them into a series of boundary conditions
as in the case of the Laplace equation. First, we ex-
pand the terms ¥x(r+, 0+, ¢+) and Ok (rs, 0+, px)/0n
into a power series of € around the point £ = 0. Then,
we combine the like powers of € in (7) obtaining a series
of boundary conditions which become progressively more
complicated when k increases.

We have calculated the first three terms and we present
the final results only for a homogeneous electric field.
(The detailed perturbative procedure for finding the so-
lution of the electric-field problem will be published in
a separate paper.) In the approximation of a very thin
membrane (d &~ 4 nm, R =~ 10 um, d/R ~ 10~%), the

J

V2V + (2 - 6)V?u + 2(5 — p)u
= (p— 258) + 2[2YLY + V1YY,

Y] + €* 1Y VAV (Yu) —

electric field out of the membrane coincides with the ap-
plied field and we have first- and second-order corrections
for the electric field E,, in the membrane only:

En =E — [(ém — €w)/em](n - E)n. (8)

To find the vesicle energy in the electric field when the
potential on the electrodes is kept constant [6], one has
to integrate (1/8m)(€m — €w) VY™ - Vifp over the volume
occupied by the vesicle membrane. So, for a quasispher-
ical vesicle in a homogeneous electric field the electric
energy per unit area is

F. = d|(em — €w)/87|E* — d|(€m — €w)?/8mem) B2 nk.
9)

The first term is independent of the shape of the vesicle
and is equivalent to an electric surface tension propor-
tional to E2. The second term is the nontrivial part
dependent on the vesicle shape via ng, the projection of
vesicle normal onto the direction of the applied electric
field E. The vesicle electric energy (9) adds to the Hel-
frich curvature elastic energy [7] and the area and volume
conservation constraints [8,9]. Thereafter, the vesicle to-
tal energy F

}':chds—kfFeds—&—afds—pfdv (10)

is minimized using the standard variational procedure
described in [8, 9].

The equation for the equilibrium shape of a quasispher-
ical vesicle in a homogeneous electric field obtained by
minimizing the vesicle total energy (10) is

1VAV2 (YY) — 1YYV Vi — 3(VPYPYY)u

+1(VYY? + 6YY) VP, (11)

where

& = {0+ d[(em — €u)/87|E*}(R?/ke), P =p(R’/ke),
€2 = (dR?/8nke)|(em — €w)?/em](4m/3)E* > 0,

and Y;"(6,p) are the spherical harmonics as defined
in [10]. We have two electrically dependent terms on the
right-hand side of the equilibrium shape equation (11).
The first acts as a driving force for the vesicle deforma-
tion and is independent of the deformation itself. This
term is small when the applied electric field is weak. As
far as the approximation used is valid for small defor-
mations only we shall restrict ourselves to the case of
weak electric fields, the second term being then a small
correction.

The eigenfunction-eigenvalue equation of our problem
obtained from the second variation of vesicle total en-
ergy (10) as described in (8, 9] is

V2ViZI 4+ (2 - 3)V2ZT + 26 — D) Zr
= AT ZT + [ AYPVAVE(YLZY) - VAIVA(YYYZ)
—IVPYPVRVRZY - L(VIYYYY) 2y
+1(VYYY? + 6 YY) V22 (12)

—

If the vesicle fluctuations V (6, ¢,t), i.e., the deviations
from the equilibrium shape, are decomposed into a series
of its eigenfunctions Z7*(6, ¢),

VO, ot) =Y Y UT()Z7 (6, 9), (13)

the second variation of total energy 62F can be trans-
formed (8, 9] into the very simple form of the sum of
harmonic oscillators with amplitudes U (t). Thereafter,
the mean-squared amplitudes (U™ (t)|? ) are obtained by
applying the equipartition theorem

3007 = 5 T ATIUTOF — (Ur o) = M

(14)

Since (12) contains the electric field as a parameter, the
eigenvalues and the eigenfunctions depend on the electric
field as well, this influence being investigated now in more
detail.

For weak electric fields, we apply the perturbations
method to find the corrections to the spherical shape
eigenfunctions Y;™(6, ) and the calculated eigenvalues
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An [8,9]:
An(00,p0) = (n — 1)(n + 2)[o0 + n(n + 1)] — 2(po — 200).
(15)
We suppose
g =00+ Zezkak, D=po+ Zezkpk,
k=1 k=1
Z7(0,9) =Y0,0) + D VT, (16)

k=1
oo
AT =dn+ ) e iAT.
k=1
The first-order corrections to the eigenfunctions have the
form
Vit = Ano Yoo + ALY, 17)
with

m _iSnz—Sn—2 [(n —1)2 — m?][n2 — m2?]
"2 4 A —An—2 YV (@2n—=3)2n—-1)2(2n+1)’

m 33n24+9n+4

_ [(n + 1)2 = m?][(n + 2)2 — m?]
nt2 = 7=

(2n+1)(2n +3)2(2n+5) '

)\n - )\n+2
and the first-order corrections to the eigenvalues read
1A = (nz +n+2)o1 — 2p1

2n? +2n — 1 — 2m?
(2n —1)(2n +3)

—%(n2 +n+2) (18)
In principle, the calculations can be done up to any de-
sired precision, the problems being of technical character
only. The parameters o and pr are arbitrary for the
moment and will be determined later on, when the equi-
librium shape is found.

To find the equilibrium vesicle shape, we need two sup-
plementary conditions to determine the membrane ten-
sion & and the transmembrane hydrostatic pressure dif-
ference p. These are [8, 9] the condition for constant
vesicle volume

}[[u +u2ldo + f(vz)dn - 4?% (19)

and constant membrane area

2 2
}f[zu+u2—“v “]dn+j{<v2— vy V>dQ=47rs,

2 2
(20)

where v is the vesicle excess volume, s is the membrane
excess area, and d) = sin § df dp. Substituting the fluc-
tuations V with the series of eigenfunctions (13) for a
given electric field we get the explicit form

Fwna= S wron-LX Y s e

2 VVV kT n+n+2 1
f<v 2 >dn_kczz 2 Ap(e?)’

(22)

Once again, we use the perturbations method to solve
the set of the equilibrium shape equation (11) and both
supplementary conditions (19) and (20) in a power series
of €2, and we expand 1/A7(e?) in a series of €2 as well:

_ o 2k 1 1 1AL
u=D_ e u, A7) A [1 P™

e+ ] . (23)
k=0

In the limit e2 — 0 one gets the set of equations for
the sphere [8, 9]. Choosing R to be the radius of the
equilibrium sphere (e? = 0) as in [11], we find ug = 0
and the well-known Laplace relation between the mem-
brane tension and the transmembrane pressure difference
Po = 200 [8,9]. In that case, the last term in (15) vanishes
and the expression becomes identical to that obtained by
Milner and Safran [11]:

An(00) = (n — 1)(n + 2)[o0 + n(n + 1)].

Equations (19) and (20) determine the excess volume and
area as functions of membrane tension oy.

Because ug = 0 the solution of equilibrium shape equa-
tion starts in the first order of e2:

u(8, ) = —/16/5m [€2/X2(00)]Y2 (6, ¥)- (24)

We see that the electric field deforms spherical vesicles
into oblate ellipsoids with symmetry axis parallel to it
and that the amplitude of the deformation at a given F
depends on the membrane tension as well. The larger
the tension, the smaller the deformation.

The first-order correction to the vesicle shape deter-
mines the parameters p; = 0 and o; = 1/4m. So, the
first-order corrections (18) to the eigenvalues finally read

[n(n + 1) — 3m?

m_ 12 [n(n+1) = 3m7
A = (0t ) e T D e+ 3)

(25)
Due to the explicit m dependence in (25) there is no
more degeneracy with respect to m as in (15). This
is a straightforward consequence of the applied electric
field that breaks the spherical symmetry. It is interest-
ing to mention that Y, 1A™ = 0, indicating that
the sum Y (|U™(¢)|?) does not change in the first
order of e2. There is only a redistribution among the
different m modes, keeping their sum constant. Because
1A < 0 and ;AF! < 0 the electric field enhances the
mean-squared amplitudes (|U2(¢)|?) and to a lesser ex-
tent (|U3'(t)|?), but suppresses ([UF2(t)|2) (1A > 0).
In order to give an idea of the magnitude of this effect
for an electric field e2 = 1 and zero membrane tension
oo = 0, we have calculated the deformation from the
sphere |u(6,¢)/Y2(8,9)| ~ 4%. At the same condi-
tions the relative increase of the above-mentioned mean-
squared amplitudes is 2%, 1%, and —2%, respectively.
The giant vesicles were prepared from egg lecithin ac-
cording to the procedure described in [12,13]. Two dif-
ferent experimental chambers were used. The first one is
built from two microscope slides separated by two par-
allel platinum wires of diameter 0.2 mm at a distance of
2 mm, generating an electric field perpendicular to the
optical axis. In the second one, the optical axis is paral-
lel to the applied electric field. This cell consists of two
microscope slides covered with a transparent conductive
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(a) (b)

FIG. 1. Strongly fluctuating giant (R ~ 8 um) vesicle
under ac electric field perpendicular to the direction of obser-
vation. The arrows mark the direction of the electric field.
The dark region on top is one of the electrodes. (a) At the
low-frequency conductive regime, the vesicle is deformed into
the prolate ellipsoid, f = 1 kHz, 1 V (rms) on the electrodes;
(b) at the high-frequency dielectric regime, the vesicle is de-
formed into the oblate ellipsoid, f = 13 kHz, 20 V (rms) on
the electrodes.

layer of indium tin oxide and separated by a silicon spacer
of 0.3 mm. Pure (Milli-Q) water (x < 5x 107 S/m) was
used in all the experiments.

A strongly fluctuating giant (R ~ 8 pum) vesicle was
selected for the experiment. The ac electric field was
applied using the first cell and the result is shown in
Fig. 1. When the frequency is low (f = 1 kHz), we
are in a conductive regime and the vesicle deforms into
prolate ellipsoid, Fig. 1(a), as already observed by many
authors [5]. But at high frequency (f = 13 kHz), it

deforms into oblate ellipsoid, Fig. 1(b).

Another experiment was performed on strongly fluctu-
ating vesicles subjected to an electric field parallel to the
optical axis (second cell, not shown). At low frequency
(f = 1 kHz), the vesicle radius decreases when the field
is on and increases back when the field is off. At high
frequency (f = 13 kHz), on the contrary, the effect is
now reversed.

The experimental findings are in qualitative agreement
with the model predictions that a high-frequency elec-
tric field deforms quasispherical vesicles into an oblate
ellipsiod. Quantitative measurements are currently in
progress.

We have to point out that this effect can only be ob-
served with a high-purity sample (lipid and water as
well). Even small amounts of ions can dramatically in-
crease the water conductivity and shift the dispersion
frequency w = 4mwk/e€,, beyond the experimentally reach-
able frequencies.

We have also observed some facts that cannot fit in
our (small deformations only) model, but are otherwise
quite understandable. In both regimes, conductive as
well as dielectric, the fluctuation amplitude visibly de-
creased when the field was very strong and resumed again
when the field was reduced. At the same time the ob-
served deformations were relatively large (see Fig. 1). We
believe this effect is due to the significant ellipsoidal de-
formation induced by the strong electric field. When
the vesicle volume is constant, some membrane area is
needed for the vesicle deformation. The necessary mem-
brane area is taken from the area available to the thermal
fluctuations, so their amplitudes decrease. This is the
same fake stretching elasticity theoretically proposed by
Helfrich and Servuss [14] and used by Evans and Raw-
icz [15] to measure the bending elasticity k.. The same
effect of reducing the fluctuations by sucking part of the
vesicle membrane into a pipet is already observed in [15].
A more elaborate model, suitable to account for larger
shape deformations, is currently into development.
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(b)

FIG. 1. Strongly fluctuating giant (R ~ 8 um) vesicle
under ac electric field perpendicular to the direction of obser-
vation. The arrows mark the direction of the electric field.
The dark region on top is one of the electrodes. (a) At the
low-frequency conductive regime, the vesicle is deformed into
the prolate ellipsoid, f = 1 kHz, 1 V (rms) on the electrodes;
(b) at the high-frequency dielectric regime, the vesicle is de-
formed into the oblate ellipsoid, f = 13 kHz, 20 V (rms) on
the electrodes.



